

General Instructions:

Admission no:

Question 1 to 5 carries ONE mark each. Questions 6 to 7 carries TWO marks each. Questions 08 to 09 carries THREE marks each. Question 10 to 11 carry FIVE mark each.

MARKING KEY

Roll no:

1.	Let T be the set of all triangles in the Euclid if a is congruent to b, \forall a,b \in T. Then R is a) Reflexive but not transitive c) Equivalence		dean plane, and let a relation R on T be defined as a R b b) transitive but not symmetric d) None of these	
2.	 Let us define a relation R in R as aRb if a≥ b. Then R is a) An equivalence relation b) reflexive, transitive but not symmetric c) symmetric, transitive but not reflexive. b) reflexive nor reflexive but symmetric. 			
3.	Let f:R $\rightarrow R$ be defined by f(x)= $\frac{1}{x}$, $\forall x \in \mathbb{R}$. Then f is			
	a) One-one	b) onto	c) bijective	d) f is not defined.
4.	Which of the follow: a) $f(x)=x^3$	ing functions from Z in b) f(x)= x+2	to Z are bijection? c) $f(x) = 2x+1$	d) x ² +1
5.	5. If $3\tan^{-1}x + \cot^{-1}x = \pi$, then x equals			
	a) 0	b) 1	c) -1	d) $\frac{1}{2}$
 6. Let R= {(a, a³): a is a prime number less than 5} be a relation. find the range of R. Ans; a is a prime number less than 5, R={(2, 8), (3, 27)} Range is (8, 27) 				
7. Write the principle value of $\tan^{-1}\left[\sin\left(-\frac{\pi}{2}\right)\right]$.				
Ans: $\tan^{-1}(-1) = -\tan^{-1}(\tan\frac{\pi}{4}) = -\frac{\pi}{4}$				
8. Let f: W \rightarrow W be defined as f (n) = $\begin{cases} n+1, if \ n \ is \ even \\ n-1, if \ n \ is \ odd \end{cases}$, show that f is bijective function.				
Ans: Let $x,y \in W$, if x and y both are even, $f(x) = f(y)$ or $x=y$. If x and y are odd, $f(x) = f(y)$ or $x=y$. If x is even and y is odd, $x \neq y$ or $f(x) \neq f(y)$ If x is odd and y is even, $x \neq y$ or $f(x) \neq f(y)$ Hence, f is one-one. Range of f is $\{0, 1, 2, 3, 4, 5,\}$ = codomain Hence f is onto.				
			CL_>	<pre>KII_PERIODIC TEST-1_MATH_MS_1/2</pre>

9. Find the principle value of $\tan^{-1}(\sqrt{3}) + \cot^{-1}(-\sqrt{3})$. Ans: $\frac{\pi}{3} + \cot^{-1}(-\cot\frac{\pi}{6}) = \frac{\pi}{3} + \cot^{-1}(\cot(\pi - \frac{\pi}{6}))$ $\frac{\pi}{3} + \frac{5\pi}{6} = \frac{7\pi}{6}$

10. If Z is the set of all integers and R is the relation on Z defined as $R = \{(a, b): a, b \in Z \text{ and } a - b \text{ is divisible by 5}\}$, Prove that R is equivalence relation.

Ans: Reflexive: for any x∈ Z, we have x-x =0, which is divisible by 5, Therefore R is reflexive. Symmetric: for any x,y ∈ Z, we have x-y is divisible and y-x is also divisible by 5, Therefore R is Symmetric.

Transitive: for any x,y,z ∈ Z, we have x-y is divisible by and y-z is also divisible by 5, then x-z is also divisible by 5, Therefore R is Transitive. Hence R is a Equivalence relation.

11. Show that the function f in A= R- $\left\{\frac{2}{3}\right\}$ defined as $f(x) = \frac{4x+3}{6x-4}$ is one-one and onto function.

Ans: To show f in one-one

 $f(x_{1})=f(x_{2}) , \frac{4x_{1}+3}{6x_{1}-4} = \frac{4x_{2}+3}{6x_{2}-4}$ $x_{1} = x_{2}$ To show f is onto Y=f(x) $y=\frac{4x+3}{6x-4}$ $x=\frac{4y+3}{6y-4} \in B = R-\frac{2}{3}$

for every value of y except $y=\frac{2}{3}$, there is a pre-image $x=\frac{4y+3}{6y-4}=g(y)$. therefore f is onto.
